Standard Method Performance Requirements (SMPRs) for Determination of Lutein in Infant and Adult/Pediatric Nutritional Formula

Intended Use: Reference Method for Dispute Resolution

1 Applicability

Determination of all-trans lutein (CAS 127-40-2) and cis isomers of lutein in all forms of infant, adult, and/or pediatric formula (powders, ready-to-feed liquids, and liquid concentrates).

2 Analytical Technique

Any analytical technique that meets the following method performance requirements is acceptable.

3 Definitions

Accuracy (corresponds to the VIM definition for “trueness”).—The closeness of agreement between the average of an infinite number of replicate measured quantity values and a reference quantity value.

Adult/pediatric formula.—Nurtionally complete, specially formulated food, consumed in liquid form, which may constitute the sole source of nourishment [AOAC Stakeholder Panel on Infant Formula and Adult Nutritionals (SPIFAN); 2010], made from any combination of milk, soy, rice, whey, hydrolyzed protein, starch, and amino acids, with and without intact protein.

Infant formula.—Breast-milk substitute specially manufactured to satisfy, by itself, the nutritional requirements of infants during the first months of life up to the introduction of appropriate complementary feeding (Codex Standard 72–1981), made from any combination of milk, soy, rice, whey, hydrolyzed protein, starch, and amino acids, with and without intact protein.

Limit of detection (LOD).—The minimum concentration or mass of analyte that can be detected in a given matrix with no greater than 5% false-positive risk and 5% false-negative risk.

Limit of quantitation (LOQ).—The minimum concentration or mass of analyte in a given matrix that can be reported as a quantitative result.

Lutein.—All-trans lutein (IUPAC name: (1R)-4-[[1E,3E,5E,7E,9E,11E,13E,15E,17E]-18-[(1R,4R)-4-hydroxy-2,6,6-trimethylcyclohex-2-en-1-yl]-3,7,12,16-tetramethyloctadeca-1,3,5,7,9,11,13,15,17-nonaenyl]-3,5,5-trimethylcyclohex-3-en-1-ol, CAS number: 127-40-2) and its cis isomers. See Figure 1.

Repeatability (RSD).—Variation arising when all efforts are made to keep conditions constant by using the same instrument and operator, and repeating during a short time period. Expressed as the repeatability standard deviation (SD); or % repeatability relative standard deviation (%RSD).

Reproducibility.—The standard deviation or relative standard deviation calculated from among-laboratory data. Expressed as the reproducibility standard deviation (SD); or % reproducibility relative standard deviation (%RSD).

4 Method Performance Requirements

See Table 1.

5 System Suitability Tests and/or Analytical Quality Control

Suitable methods will include blank check samples, and check standards at the lowest point and midrange point of the analytical range. Methods must be capable of resolving lutein from zeaxanthin.

6 Reference Material(s)

SRM 1869. Contact Dr. Melissa Phillips, Research Chemist, NIST, for materials at email: melissa.phillips@nist.gov, Tel: (301) 975-4134.

7 Validation Guidance

Recommended level of validation: Official Methods of AnalysisSM.

8 Maximum Time-to-Result

No maximum time.

Approved by the AOAC Stakeholder Panel on Infant Formula and Adult Nutritionals (SPIFAN). Final Version Date: March 15, 2017.

Table 1. Method performance requirements

<table>
<thead>
<tr>
<th>Analytical range</th>
<th>1–800μg/100 g reconstituted final product; range and LOQ are based on total of cis+trans isomers.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limit of quantitation (LOQ)</td>
<td>≤1μg/100 g reconstituted final product; range and LOQ are based on total of cis+trans isomers.</td>
</tr>
<tr>
<td>Recovery</td>
<td>90–110%</td>
</tr>
<tr>
<td>Repeatability (RSD)</td>
<td>1–100μg/100 g reconstituted final product; range and LOQ are based on total of cis+trans isomers.</td>
</tr>
<tr>
<td></td>
<td>1%</td>
</tr>
<tr>
<td>Reproducibility (RSD)</td>
<td>>100–800μg/100 g reconstituted final product; range and LOQ are based on total of cis+trans isomers.</td>
</tr>
<tr>
<td></td>
<td>5%</td>
</tr>
</tbody>
</table>

Figure 1. Molecular structure of all-trans lutein.