1	DR	DRAFT AOAC SMPR 2021.XXX; Version 7; March 05, 2021					
2 3 4	Me	thod Name:	Standard Method Performance Requirements for Viable Total Yeast and Mold Count Enumeration				
5 6 7	Pui	Purpose: AOAC Standard Method Performance Requirements SM (SMPRs) describe the minimum					
8 9	eva	iluation may be an	on-site verification, a single-laboratory validation, or a multi-site collaborative ten and adopted by AOAC stakeholder panels composed of representatives from				
10 11 12 13 14	ind inst dat <i>Anc</i>	industry, regulatory organizations, contract laboratories, test kit manufacturers, and academic institutions. AOAC SMPRs are used by AOAC expert review panels in their evaluation of validation study data for method being considered for <i>Performance Tested MethodsSM</i> or AOAC <i>Official Methods of</i> <i>AnalysisSM</i> and can be used as acceptance criteria for verification at user laboratories. ¹					
15 16 17 18	Apı Apı Fin	proval Body: proval Date: al version date:	AOAC Cannabis Analytical Science Program				
19 20	1.	Intended Use:	Consensus-based Reference method.				
21 22 23 24	2.	Applicability: Car and/or cannabis p broader claims.	ididate methods used to detect and quantify viable yeast and mold in cannabis roducts. Candidate methods may be validated for specific matrices, categories or				
25 26		See Table 4 for ma	atrix/category claim acceptance criteria.				
27 28 29	3.	Analytical Technic is acceptable.	que : Any analytical technique that meets the method performance requirements				
30 31	4.	Definitions:					
32 33 34 35		Candidate Metho Methods Committe Environmental Sur AOAC INTERNATIO	d. — The method submitted for validation [Appendix J: AOAC INTERNATIONAL ree Guidelines for Validation of Microbiological Methods for Food and rfaces, Official Methods of Analysis of AOAC INTERNATIONAL, (2019) 21 st Ed., DNAL, Rockville, MD, USA]				
36 37		Candidate Method Presumptive Result.—Preliminary result for a test portion produced by following					
38 39		a candidate meth	od's instructions for use.				
40 41 42		<i>Candidate Method Confirmed Result</i> .—Final result obtained for a test portion after cultural confirmation of a candidate method.					
43 44 45 46		<i>Cannabis</i> .—genus tetrahydrocannab includes, but is no	of flowering plants within the Cannabinaceae family that commonly contain 9- inol (THC), cannabidiol (CBD), and other cannabinoids and terpenes. Cannabis It limited to, high-THC and high-CBD cultivars.				
47 48 49		<i>Cannabis Concent</i> manufactured thr plant or flower. F	c rates .—Extracts (primarily composed of cannabinoids and/or terpenes) ough the extraction and concentration of compounds derived from the cannabis inal products can be many forms including oils, wax, or hash (Category II).				

50 51 Cannabis Infused Edibles.—Food and drinks containing extracts of cannabis and/or cannabis 52 materials (Category III). 53 54 Cannabis Infused Non-Edibles.—Products containing extracts of cannabis and/or cannabis materials 55 intended to be applied to the human body or any part thereof. Final products can be many forms 56 including creams, ointments, cosmetics and therapeutic pads (Category IV). 57 58 Cannabis Plant and Flower.—General terms for the structural and flowering unadulterated parts of 59 the cannabis plant (Category I). 60 61 Cannabis Products. - Products (Edible, and non-edible) extracted or infused with compounds 62 derived from the cannabis plant including but not limited to CBD and THC. 63 64 Confidence Interval. — The estimated range in which an obtained result should enclose the 65 actual concentration. For the purpose of this SMPR, a 90% confidence interval is used. 66 67 Probability of detection (POD). - The portion of positive analytical outcomes for a semi-quantitative 68 method for a given matrix at a given analyte level or concentration. This difference in POD values 69 between presumptive and confirmed results is termed dPOD_{CP}. 70 71 **Enumeration.** – The determination of viable microorganisms in a given test portion. 72 73 Exclusivity.—Study involving pure nontarget strains, which are potentially cross-reactive, that shall 74 be not detected or enumerated by the candidate method. See Table 8 for a list of recommended 75 nontarget strains.² 76 77 *Inclusivity*.—Study involving pure target strains that shall be detected or enumerated by the 78 candidate method. See Table 7 for a list of recommended target strains.² 79 80 Laboratory probability of detection (LPOD).—The POD value obtained from combining all valid 81 collaborator data sets for a method for a given matrix at a given analyte level or concentration.³ 82 83 *LCL*.—Lower confidence limit. 84 85 *Limit of Detection.* - The analyte concentration at which the probability of detection (POD) is equal 86 to 50%. 87 88 Limit of Quantitation. - lowest analyte concentration that can be quantified with an acceptable level 89 of precision and trueness under the conditions of the test. 90 91 Quantitative Method. – Method of analysis whose response is the amount (count or mass) of the 92 analyte measured either directly (e.g., enumeration in a mass or a volume), or indirectly (e.g., color 93 absorbance, impedance, etc.) in a specified test portion.² 94 95 *Test portion.*—The test portion is the sample size used in most validation studies. For cannabis 96 flower/plant and cannabis infused non-edible products a 10 g test portion is used. For cannabis 97 concentrates, a 5 g test portion is used. For cannabis infused edibles, a 25 g test portion is used. A

98		larger test portion can be used in validation studies when appropriate. ^{4,5} See Table 3 for minimum
99		test portion requirements.
100		
101		<i>UCL</i> . —Upper confidence limit.
102		
103		
104	5.	System suitability tests and/or analytical quality control:
105		
106		Positive and negative controls shall be embedded in assays as appropriate. Inhibition controls
107		should be used for method verification for each new matrix. Manufacturer must provide written
108		justification if controls are not appropriate to an assay.
109		
110 111	6.	Reference Material(s):
112		The use of live cultures and/or fungal spores (liquid stressed/non-stressed, lyophilized) is required
113		for inclusivity and exclusivity testing and for inoculation of test matrices during the matrix studies.
114		Extracted DNA is not suitable for use in validating methods against this SMPR but may be used to
115		develop supplemental information.
116		
117	7.	Validation Guidance ^{2,6} :
118		
119		At the time of the publication, no national reference method exists for viable yeast and mold count
120		determination from cannabis products. Until a suitable reference method is established the
121		following is recommended for method developers:
122		
123		Natural contamination, artificial contamination, or a combination of both are accentable for the
123		validation study. Method developers must specify which mode of contamination is used for which
125		sample subset upon method submission. If artificial contamination is used, a non-inoculated sample
126		must be included.
127		
128		When performing the validation, use of bulk contaminated test material or bulk inoculation of test
129		material is required. In certain instances (ex. therapeutic patches) individual item inoculation may
130		be required.
131		
132		For the Single Laboratory Validation with artificial contamination, matrix naturally contaminated
133		with non-target organisms (when available) shall be used.
134		
135		It is recommended that in addition to the required confirmatory agar (DRBC), a secondary, non-
136		selective agar is included in the cultural confirmation portion of the study and that suitability testing
137		of media be performed. ^{4,7,8}
138		
139		For quantitative methods, at least three contamination levels (low, medium, and high) shall be
140		included. The concentration of target organisms in each contamination level may be determined by
141		the method developer. Each contamination level should be prepared to have a concentration of
142		target organisms that is approximately one logarithmic difference from adjacent contamination
143		levels. It is expected that when applicable, contamination levels align with local regulatory
144		requirements and thresholds.
145		
140		
14/		

- 149 Data Analysis (reference Table 2):
- 150 For the data analysis portion of the method, the following guidance should be followed per method 151 type:

- *Quantitative Methods:*
 - a. Each lot of matrix must be analyzed separately for each candidate and confirmation method.
 - b. Perform a logarithmic transformation on the reported CFU/g: Log₁₀[CFU/g + 0.1]
 i. Where 0.1 provides an offset to allow inclusion of "0 CFU/g" data points.
 - c. Perform outlier tests (Cochran and Grubbs). Remove outliers from data analysis only if there is a justifiable cause.
 - d. Plot the candidate method result (y-axis) vs. the culture result (x-axis). Usually major discrepancies will appear.
 - e. Calculate repeatability as the standard deviation of replicates at each concentration of each matrix for each method.

$$S_{r} = \sqrt{\frac{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}{n-1}}$$

- f. Calculate the relative standard deviation: RSD_r = [s_r/mean_{cand}] x 100
 g. Calculate the mean difference between the candidate and reference method log₁₀ transformed results with 90% and 95% confidence intervals for matrix at each contamination level using the Least Cost Formulations, Ltd., Paired Method Analysis for Micro Testing Excel worksheet v1.2.
 h. Prepare a summary table of mean, s_r, RSD_r and difference of means with 90% and 95%
 - CI data.

Qualitative Methods:

- a. Analyze the data by Probability of Detection (POD) statistics according to the AOAC OMA Appendix J Guidelines.²
 - b. Analyze each contamination level separately.
 - c. Calculate the probability of detection (POD) as the number of positive outcomes divided by the total number of trials. Estimate the POD with a 95% confidence interval for:
 - i. the candidate method presumptive results (POD_{CP}), and
 - ii. the candidate method confirmed results (POD_{cc}).
- d. Compare the presumptive and confirmed results by determining the dPOD_{CP} at each contamination level and report results:

 $dPOD_{CP} = POD_{CP} - POD_{CC}$

where $dPOD_{CP}$ is the difference in POD values between the candidate and reference methods. If the confidence interval of a dPOD does not contain zero, then the difference is statistically significant at the 5% level. For this validation, method comparisons are paired.

8. Method Performance Requirements:

- *See* Table 1 for contamination levels and replicates required for quantitative and qualitative 201 candidate methods.
- *See* Table 2 for validation data analysis and acceptance criteria.
- *See* Table 3 category test portion requirements.
- 204 See Table 4 for matrix claims acceptance criteria.
- 205 See Table 5 condition of inoculating culture and stabilization of matrix for inoculation.
- *See* Table 6 for inclusivity and exclusivity guidance.
- *See* Table 7 for the inclusivity panel.
- 208 See Table 8 for the recommended exclusivity panel.

212 Table 1. Contamination Levels and Replicates Required for Quantitative and Qualitative Candidate

213 Methods

Type of Method	Contamination Type	Contamination Level	Replicates/ Method	Cultural Confirmation
	Natural Contamination/ Artificial Contamination	Low	5	
Quantitative		Medium	5	
		High	5	
	Natural Contamination/ Artificial Contamination	Below Lowest Threshold ^a	5	DRBC 25°C 5-7 days
Qualitativa		Low Action Limit ^b	20	
Qualitative		High Action Limit ^b	20	
		Above Highest Threshold ^c	5	

 threshold determined in b. b. Target threshold to determine a pass or fail result

c. A higher contamination level targeted to be approximately one logarithmic difference from the highest threshold determined in b.

a. A lower contamination level targeted to be approximately one logarithmic difference from the lowest

Table 2. Validation Data Analysis and Acceptance Criteria (Plants/Flowers, Concentrates, Infused Edibles, Infused Non-Edibles)

Type of Method	Contamination Level	Required Performance Characteristics	Acceptance Criteria/Confidence Interval
Quantitative	Low Medium High	Mean Repeatability (s _r) Relative Standard Deviation (RSD _r) Difference of Means	Report Statistics at 90% & 95% Confidence Intervals
	Below Lowest Threshold		POD of 0.00 ^c
Qualitative	Low Action Limit High Action Limit	Probability of Detection Statistics ^a $dPOD_{CP} = POD_{CP} - POD_{CC}$	dPOD _{cp} 95% CI: LCL < 0 < UCL ^b
	Above Highest Threshold		POD of 1.00 ^c

b. The range between the lower and upper confidence interval should encompass 0, if not, the results must be investigated, and an explanation provided.

c. If acceptance criteria is not observed, results must be investigated, and an explanation provided.

234 Table 3. Category Test Portion Requirements

Category	Minimum Test Portion Size ^a
Plants & Flowers	10 g
Concentrates	5 g
Infused Edibles	25 g
Infused Non-Edibles	10 g

^aMinimum test portion size required for validation. Alternatively, larger test portions may be validated.

Table 4. Acceptable Matrix Claims⁹

Matrix Claim	Criteria		
	Number of Matrices	Minimum Number of Categories	
Broad Range of Cannabis &	15 (minimum 3	A estogeries	
Cannabis Products	matrices/category)	4 categories	
Variety of Cannabis & Cannabis	≥ 10 (minimum 2	A cotogorios	
Products	matrices/category)	4 categories	
Select Cannabis Products	≥ 5	2 categories	
Specific Category	≥5	1 category	
Specific Matrix (s)	≥1	1 category	

242 Table 5. Condition of Inoculating Culture and Stabilization of Matrix

Matrix	Inoculating Cells	Stabilization Conditions
Perishable product	Liquid non-stressed culture	4°C, 48-72 h
Heat processed perishable product	Liquid heat stressed	4°C, 48-72 h
	Liquid non-stressed culture	-20°C.
	(If frozen food is processed,	2 weeks
Frozen Product	Product cells must be heat stressed)	
		Ambient
	Dried culture	Temperature
		(20-25°C),
Shelf stable dry product		2 weeks
	Liquid non-stressed culture	Ambient
Shelf stable liquid	(If shelf stable product is	Temperature
product	processed, cells must be heat	(20-25°C),
(heat processed)	stressed)	2 weeks

249 Table 6. Inclusivity/Exclusivity Performance Requirements

Parameter	Parameter Requirements	Final Test Concentration (CFU/mL)	Minimum Acceptable Results
Inclusivity	Single-laboratory validation (SLV) study:	10-100 x limit of	100% positive
	target strains cultured by the candidate	detection of the	results ^a
	method enrichment procedure. A minimum	candidate method	
	of 50 strains is required.		
Exclusivity	SLV study: At least 30 non-target organisms,	Overnight growth	100% negative
	(including those required in Table 8), cultured	undiluted	results ^a
	under optimal conditions for growth ^b		
a 100 inte	a 100% correct analyses are expected. All unexpected results are to be retested following internationally recognized guidelines. ^{2,6} Some unexpected results may be acceptable if the		
une	unexpected results are investigated, and acceptable explanations can be determined and		rmined and
communicated to method users			
b In ir	b In instances where an exclusivity culture produces a positive result by the candidate method		didate method, the
cult	ure may be reanalyzed after culture following the	e candidate method enric	hment procedure.
Botl	Both results (optimal growth conditions and candidate method enrichment) must be rep		

252 Table 7. Inclusivity Panel^a

No.	Organism	Source	Origin	Results
1	Alternaria alternata			
2	Arthrinium species			
3	Aspergillus aculeatus			
4	Aspergillus brasiliensis			
5	Aspergillus caesiellus			
6	Aspergillus flavus			
7	Aspergillus fumigatus			
8	Aspergillus niger			
9	Aspergillus oryzae			
10	Aspergillus terreus			
11	Aureobasidium species			
12	Botrytis cinerea			
13	Candida albicans			
14	Candida tropicalis			
15	Cladosporium species			
16	Cryptococcus laurentii			
17	Cryptococcus neoformans			
18	<i>Erysiphe</i> species ^{b, c}			
19	Fusarium proliferatum			
20	Fusarium oxysporum			
21	Fusarium solani			
22	Golovinomyces cichoracearum ^{b, c}			
23	Hyphodontia species ^c			
24	<i>Microsphaera</i> species ^{b, c}			
25	Mucor circinelloides			
26	Mucor hiemalis			
27	Paecilomyces species			
28	Penicillium chrysogenum			
29	Penicillium rubens			
30	Penicillium venetum			
31	Phytophthora infestans			
32	Podosphaera species ^{b, c}			
33	Purpureocillium species			
34	Rhizopus oryzae			
35	Rhizopus stolonifera			
36	Scopulariopsis acremonium			
37	<i>Sphaerotheca</i> species ^{b, c}			
38	Yarrowia lipolytica			
39	Talaromyces pinophilus			

253 Method developers must test 50 total species to meet inclusivity requirements

254 ^bOrganisms associated with powdery mildew

255 Organism availability may be limited. Every effort to obtain these strains should be made. Non-traditional culture

collections, such as the Cornell University Plant Pathology Herbarium, should be contacted for availability. In

257 cases where strains are not available, different species may be supplemented. Expert reviewers will make the

 $258 \qquad {\rm final\ determination\ if\ species\ analyzed\ is\ sufficient\ for\ certification.}$

259

Table 8. Exclusivity Panel

List of suggested organisms method deve	lopers can use to validate their methods.			
A minimum of 30 non-target organisms a	re required for AOAC adoption.			
Organisms utilized should be well characterized and information provided must				
include source, strain numbers and origin (if available)				
Organism	Reference ID (where applicable)			
Acinetobacter baumanii				
Aeromonas hydrophila				
Burkholderia cepacia				
Bacillus subtilis				
Citrobacter braakii				
Citrobacter farmeri				
Edwardsiella tarda				
Enterobacter aerogenes				
Enterobacter cloacae				
Erwinia amylovora				
Escherichia coli				
Escherichia coli O157:H7				
Escherichia hermanii				
Escherichia vulneris				
Hafnia alvei				
Klebsiella oxytoca				
Klebsiella pneumonia				
Listeria monocytogenes				
Morganella morganii				
Pantoea agglomerans				
Proteus mirabilis				
Pseudomonas aeruginosa				
Pseudomonas fluorescens				
Pseudomonas putida				
Ralstonia insidiosa				
Rahnella aquatilis				
Salmonella Agona				
Stenotrophomonas maltophilia				
Staphylococcus aureus				
Serratia marcescens				

267	References		
268			
269	(1)	Appendix F: Guidelines for Standard Method Performance Requirements, Official	
270		Methods of Analysis of AOAC INTERNATIONAL, 21 st Ed. (2019). AOAC	
271		INTERNATIONAL, Rockville, MD, USA.	
272	(2)	Appendix J: AOAC INTERNATIONAL Methods Committee Guidelines for Validation	
273		of Microbiological Methods for Food and Environmental Surfaces, Official Methods	
274		of Analysis of AOAC INTERNATIONAL, 21 st Ed. (2019). AOAC INTERNATIONAL,	
275		Rockville, MD, USA.	
276	(3)	Appendix H: Probability of Detection (POD) as a Statistical Model for the	
277		Validation of Qualitative Methods, Official Methods of Analysis of AOAC	
278		INTERNATIONAL, 21 st Ed. (2019). AOAC INTERNATIONAL, Rockville, MD, USA.	
279	(4)	General Chapter <61> Microbiological Examination of Nonsterile Products:	
280		Microbial Enumeration Tests, USP 40. (2016). United States Pharmacopeia,	
281		Rockville, MD, USA.	
282	(5)	General Chapter <62> Microbiological Examination of Nonsterile Products: Tests	
283		for Specified Microorganisms, USP 40. (2016). United States Pharmacopeia,	
284		Rockville, MD, USA.	
285	(6)	ISO 16140-2:2016, Microbiology of the Food Chain — Method Validation Part 2:	
286		Protocol for the validation of alternative (proprietary) methods against a reference	
287		method, (2016). International Organization for Standardization, Geneva,	
288		Switzerland.	
289	(7)	ISO 16212:2017, Cosmetics — Microbiology — Enumeration of yeast and mould,	
290		(2017). International Organization for Standardization, Geneva, Switzerland.	
291	(8)	Ph. Eur. 01/2005:20612, Microbiological examination of non-sterile products (total	
292		viable aerobic count), European Pharmacopeia 5.0. (2005). European	
293		Pharmacopeia, Strasbourg, France.	
294	(9)	McKenzie, D. 2016. Technical Bulletin: TB02MAY2016: Acceptable Validation	
295		Claims for Proprietary/Commercial Microbiology Methods for Foods and	
296		Environmental Surfaces. AOAC INTERNATIONAL, Rockville, MD, USA.	
297			
298			
299			
300			
301			