AOAC INTERNATIONAL

Email: Cannabis_PT@AOAC.org

CH01 Hemp Proficiency Testing Program Cannabinoids, Terpenes, Moisture, and Heavy Metals

PT Round # - Pilot

Shipment Date 05-02-22

Preliminary Report Issue Date: 07-27-22

CONTENTS

1.0 Introduction		L
2.0 Test Design	1	Ĺ
3.0 Homogeneity	1	L
4.0 Preparation of Test Materials	2	<u>></u>
5.0 Calculations and Interpretations of Z-Scores	3	3
6.0 General Discussion of Results	2	1
Appendix A (Participating Laboratory's Results)		
Appendix B (Homogeneity)		
Annendix C (Instructions for Analysis)		

This report has been authorized by Shane Flynn, Senior Director Proficiency Testing

Shane P Flynn

1.0 Introduction

Test materials for the CH01 Hemp Proficiency Testing Program were shipped to participants on May 2, 2022. Each laboratory was given a site identification number in order to maintain confidentiality. Instructions for Analysis and instructions on how to report results within the AOAC Proficiency Testing website were provided to the participants. Participants were instructed to analyze the test materials according to procedures routinely used in their laboratories. Results were to be submitted to AOAC by May 24, 2022. This is a preliminary report and is subject to change after feedback is received. A final Report will be issued once feedback has been received and addressed.

2.0 Test Design

The matrix selected for the CH01-Pilot round was a sativa-dominant hybrid and indoor grown hemp flower. The matrix was prepared according to SOPs which included the use of a clean stainless-steel grinder and medium-sized screen to create an "oregano"-sized ground hemp flower. After grinding, the material was homogenized thoroughly by mixing.

3.0 Homogeneity

Three samples were analyzed in duplicate to provide assurance that samples were homogeneous within and across the samples prepared. The criterion for assessing homogeneity was that no differences be identified among the homogeneity samples based on an Analysis of Variance (ANOVA) F test at a significance level of 0.01. All evaluated naturally occurring sample components met this criterion. In addition, within and across sample standard deviations were calculated along with other summary statistics. See Appendix B for homogeneity data.

Samples were prepared and shipped by the following Laboratory:

4.0 Preparation of Test Materials

Sample 1-Blue contains naturally occurring components and was evaluated for cannabinoids, terpenes, heavy metals, and moisture content. Sample 1-Blue samples were prepared to provide a naturally occurring set of compounds and contaminants within the matrix for analysis. No analytes were spiked onto the hemp flower matrix. Samples were created and stored within a 5 x 8 x 2.5" silver barrier bag. Each barrier bag was labeled prior to filling. For the Sample 1-Blue samples, 10 g +/- 0.1 g of homogenized ground hemp matrix was weighed into a tared weigh boat and added to the barrier bag before closing and heat sealing the bags with an impulse sealer. Once sealed, samples were kept in a secondary sealed plastic bag in the refrigerator (2-8°C) until shipment.

5.0 Calculation and Interpretation of z-scores:

For each individual result, a z-score was calculated as follows:

$$z = \frac{(x - X)}{s}$$

where:

z = the z score (standard score)

x = the reported value of analyte

X = the assigned value, the best estimate of the "true" Concentration

s = the estimate of variation (standard deviation)

The robust procedure from ISO 13528:2015 (E), Statistical methods for use in proficiency testing by interlaboratory comparisons is used in processing the result data. Robust statistics relies on medians rather than means and uses more information from the central than from the outlying observations.

The assigned value used was based on the median of four expert laboratories that met specific criteria. The standard deviation used was 20% of the assigned value, the SD represents the use of the Horowitz equation. Measurement uncertainty (standard uncertainty of the assigned value) has also been provided.

The following interpretation of z-scores for each individual test result is provided in of ISO/ IEC Standard 17043:2010(E) Conformity Assessment - General requirements for proficiency testing schemes common examples of application of z-scores:

Result Obtained	Rating
IzI ≤ 2	Satisfactory
2 < IzI < 3	Questionable
lzl ≥ 3	Unsatisfactory

Calculations for z scores based on the data presented in the results sheet might be slightly different from the z-scores assigned by AOAC. The z-scores assigned by AOAC are based on calculations that may use more significant figures than is possible to display on the results sheet.

6.0 General Discussion of Results

Confidentiality of results will be maintained by issuing site identification codes to the participating laboratories. Results in the reports will only be identified by the site identification code. Z-scores have been provided for the following groups of analytes in Sample 1-Blue: Cannabinoids, Terpenes, Moisture. Z-scores are not provided for Heavy Metals because the amount of heavy metals in the sample was < LOD of the method reported by the test material provider lab for Arsenic, Cadmium, Lead, and < LOQ for Mercury. In addition, some tests had fewer participants submitting results because some laboratories do not routinely perform all analyses.

Appendix A is included in this report to show participating laboratories' reported result, method used, assigned value, standard deviation, median, min, max, z-score, and measurement uncertainty. If a component was included in the analysis by the laboratory but it was < LOD it is represented as "Result Reported as < (or below LOD). If there was not enough statistical data because that analyte was not found in the sample or there were not enough data points from expert labs to determine the assigned value or calculate z-scores, there is the Note "Not Used for Evaluation" for that analyte. Each laboratory should use the information in Appendix A to determine areas of improvement.

If a participant would like to appeal against the assessment of their performance in this proficiency testing scheme please contact staff at Cannabis PT@AOAC.org

Individual laboratory results are in Appendix A

Appendix A

Cannabis-Hemp Testing Results 05/02/2022

Display of All Reported Results and z-Scores (When Applicable)

Site=XXXXXX

Site	Analyte	Test	Sample	Method	Reported Result	•			Median Result	Max_Result	Assigned Value		Z-Score	Standard Uncertainty of the Assigned Value	Note
	Cannabinoids Test-1	% Cannabindiol (CBD)	Blue	AOAC 2018.10	0.4270	17	0.044	0.428	0.423	0.688	0.45033	0.09007	-0.259	0.027	
	Cannabinoids Test-2	% Cannabidiolic acid (CBDA)	Blue	AOAC 2018.10	10.6000	17	9.500	11.118	11.157	12.570	10.85000	2.17000	-0.115	0.658	
	Cannabinoids Test-3	% Cannabinol (CBN)	Blue	AOAC 2018.10	0.0030	17	0.000	0.050	0.010	0.340					Not Used for Evaluation
	Cannabinoids Test-4	% Cannabigerol (CBG)	Blue	AOAC 2018.10	0.0450	17	0.000	0.058	0.030	0.340					Not Used for Evaluation
	Cannabinoids Test-5	% Δ9-tetrahydrocannabinol (Δ9-THC)	Blue	AOAC 2018.10	0.0550	18	0.000	0.072	0.056	0.340	0.05520	0.01104	-0.018	0.003	
	Cannabinoids Test-6	% Tetrahydrocannabinolic acid (THCA)	Blue	AOAC 2018.10	0.4190	18	0.018	0.430	0.439	0.520	0.44440	0.08888	-0.286	0.026	
	Cannabinoids Test-7	% Cannabichromene (CBC)	Blue	AOAC 2018.10	0.0340	17	0.000	0.064	0.044	0.340	0.04083	0.00817	-0.836	0.002	
	Cannabinoids Test-10	% Cannabigerolic acid (CBGA)	Blue	AOAC 2018.10	0.1170	17	0.000	0.132	0.119	0.340	0.15588	0.03118	-1.247	0.009	
	Cannabinoids Test-11	% Cannabidivarin (CBDV)	Blue	AOAC 2018.10	< 0.0002	16	0.000	0.072	0.023	0.340					Not Used for Evaluation
	Cannabinoids Test-12	% Δ8-tetrahydrocannabinol (Δ8-THC)	Blue	AOAC 2018.10	< 0.0002	11	0.000	0.055	0.010	0.340					Not Used for Evaluation
	Cannabinoids Test-13	% Tetrahydrocannabivarin (THCV)	Blue	AOAC 2018.10	< 0.0004	15	0.000	0.082	0.013	0.510					Not Used for Evaluation
	Terpenes Test-1	% 3-carene	Blue		< 0.0050	12	0.000	0.008	0.004	0.020					Not Used for Evaluation
	Terpenes Test-2	% Alpha-bisabolol	Blue		0.0240	12	0.000	0.016	0.016	0.032	0.02063	0.00413	0.817	0.001	
	Terpenes Test-3	% Alpha cedrene	Blue		< 0.0050	7	0.002	0.012	0.010	0.020					Not Used for Evaluation
	Terpenes Test-4	% Alpha-humulene	Blue		0.0140	13	0.011	0.022	0.019	0.063	0.01650	0.00330	-0.758	0.001	
	Terpenes Test-5	% Alpha-phellandrene	Blue		< 0.0050	5	0.005	0.015	0.020	0.020					Not Used for Evaluation
	Terpenes Test-6	% Alpha-pinene	Blue		0.0390	13	0.020	0.039	0.036	0.063	0.03680	0.00736	0.299	0.003	

Appendix A

Cannabis-Hemp Testing Results 05/02/2022

Display of All Reported Results and z-Scores (When Applicable)

Site=XXXXXX

Site	Analyte	Test	Sample		ported esult	Number of Reported Results		Mean Result	Median Result	Max_Result	Assigned Value		Z-Score	Standard Uncertainty of the Assigned Value	Note
	Terpenes Test-7	% Beta-myrcene	Blue	0	.1320	13	0.063	0.163	0.167	0.225	0.15895	0.03179	-0.848	0.011	
	Terpenes Test-8	% Beta-ocimene	Blue	<	0.0050	10	0.000	0.009	0.008	0.020					Not Used for Evaluation
	Terpenes Test-9	% Beta-pinene	Blue	0	.0120	13	0.001	0.049	0.019	0.306	0.01357	0.00271	-0.578	0.001	
	Terpenes Test-10	% Borneol	Blue	<	0.0050	10	0.000	0.027	0.011	0.154					Not Used for Evaluation
	Terpenes Test-11	% Camphene	Blue	<	0.0050	12	0.000	0.008	0.004	0.020					Not Used for Evaluation
	Terpenes Test-12	% Camphor	Blue	<	0.0050	9	0.000	0.011	0.005	0.040					Not Used for Evaluation
	Terpenes Test-13	% Cedrol	Blue	<	0.0050	8	0.000	0.010	0.008	0.020					Not Used for Evaluation
	Terpenes Test-14	% Eucalyptol	Blue	<	0.0050	11	0.000	0.009	0.006	0.020					Not Used for Evaluation
	Terpenes Test-15	% Fenchone	Blue	<	0.0050	8	0.000	0.013	0.013	0.020					Not Used for Evaluation
	Terpenes Test-16	% Fenchyl alcohol	Blue	0	.0080	8	0.005	0.014	0.013	0.020					Not Used for Evaluation
	Terpenes Test-17	% Guaiol	Blue	0	.0220	13	0.000	0.034	0.034	0.063	0.02920	0.00584	-1.233	0.002	
	Terpenes Test-18	% Isoborneol	Blue	<	0.0050	8	0.000	0.010	0.008	0.020					Not Used for Evaluation
	Terpenes Test-19	% Limonene	Blue	0	.0180	13	0.011	0.024	0.023	0.063	0.01915	0.00383	-0.300	0.001	
	Terpenes Test-20	% Linalool	Blue	0	.0170	13	0.012	0.022	0.020	0.063	0.01928	0.00386	-0.591	0.001	
	Terpenes Test-21	% Menthol	Blue	<	0.0050	8	0.000	0.008	0.006	0.020					Not Used for Evaluation
	Terpenes Test-23	% Pulegone	Blue	<	0.0050	9	0.000	0.009	0.005	0.020					Not Used for Evaluation
	Terpenes Test-24	% Terpineol	Blue	0	.0080	10	0.002	0.013	0.013	0.020	0.00795	0.00159	0.031	0.001	

Appendix A

Cannabis-Hemp Testing Results 05/02/2022

Display of All Reported Results and z-Scores (When Applicable)

Site=XXXXXX

Site.	Amalista	Took	Samula	Mathad	Reported	•	Min	Mean	Median		Assigned	_	Z-Score	Standard Uncertainty of the Assigned Value	Note
Site	Analyte	Test	Sample	Method	Result					Max_Resul	it value	sd	Z-Score	value	
	Terpenes Test-25	% Valecene	Blue		< 0.0050	7	0.002	0.012	0.011	0.020					Not Used for Evaluation
	Terpenes Test-26	% Y-terpinene	Blue		< 0.0050	11	0.000	0.009	0.005	0.020					Not Used for Evaluation
	Moisture	% Moisture	Blue		6.4300	19	6.430	11.990	11.900	15.950	11.27380	2.25476	5 -2.148	0.647	
	Heavy Metals Test-1	ug/kg Total Arsenic	Blue	AOAC 2021.03	< 58.9000	15	0.005	680.009	20.000	9760.000					Not Used for Evaluation
	Heavy Metals Test-2	ug/kg Total Cadmium	Blue	AOAC 2021.03	10.2000	15	0.004	575.800	11.300	8310.000					Not Used for Evaluation
	Heavy Metals Test-3	ug/kg Total Lead	Blue	AOAC 2021.03	< 85.2000	15	0.010	999.333	3 24.000	14105.000					Not Used for Evaluation
	Heavy Metals Test-4	ug/kg Total Mercury	Blue	AOAC 2021.03	4.5600	15	0.003	331.660	10.000	4655.000					Not Used for Evaluation

Cannabinoids

Sample 1-Blue homogeneity samples were extracted and analyzed for seven cannabinoids using SOP for Sample Preparation and Analysis: Cannabinoid Potency and Profile by HPLC-UV. Five of the seven cannabinoids were detected and evaluated for homogeneity. Two aliquots of each sample were weighed and extracted with high-purity methanol. Samples were then vortexed thoroughly, centrifuged, diluted, and filtered before being analyzed against a seven-point calibration curve.

		ı	Homogeneity	Testing Results								
Cor	mpound	CBD	CBG	CBDa	CBN*	d9THC	THCa	d8THC*				
Sample	Replicate	Measured Concentration (w/w%)										
1149-H	1	0.44	0.041	12.51	<loq< th=""><th>0.084</th><th>0.41</th><th><loq< th=""></loq<></th></loq<>	0.084	0.41	<loq< th=""></loq<>				
1149-H	2	0.46	0.037	13.01	<loq< th=""><th>0.083</th><th>0.43</th><th><loq< th=""></loq<></th></loq<>	0.083	0.43	<loq< th=""></loq<>				
2851-H	1	0.45	0.034	12.72	<loq< th=""><th>0.083</th><th>0.42</th><th><loq< th=""></loq<></th></loq<>	0.083	0.42	<loq< th=""></loq<>				
2851-H	2	0.46	0.033	12.35	<loq< th=""><th>0.081</th><th>0.41</th><th><loq< th=""></loq<></th></loq<>	0.081	0.41	<loq< th=""></loq<>				
2815-H	1	0.46	0.038	12.30	<loq< th=""><th>0.080</th><th>0.41</th><th><loq< th=""></loq<></th></loq<>	0.080	0.41	<loq< th=""></loq<>				
2815-H	2	0.39	0.039	10.96	<loq< td=""><td>0.083</td><td>0.36</td><td><loq< td=""></loq<></td></loq<>	0.083	0.36	<loq< td=""></loq<>				
			Summar	y Statistics								
Mean (w/w%)		0.45	0.037	12.31		0.08	0.41					
Mean (mg/g)		4.5	0.370	123.1	-	0.8	4.1					
Within-Sample	Std Dev using	0.027	0.002	0.60	-	0.0014	0.021					
Between-Samp	ole Std Dev using	0.026	0.004	0.77	-	0.0012	0.024					
Total Std Devia	ation using w/w <mark>%</mark>	0.04	0.00	0.98	-	0.00	0.03					
Total CV using	w/w%	8%	12%	8%	-	2%	8%					
Min Measuren	nent w/w% (mg/g)	0.39% (3.9)	0.03% (0.3)	10.96% (109.6)	-	0.08% (0.8)	0.36% (3.6)					
Max Measurer	ment w/w% (mg/g)	0.46% (4.6)	0.04% (0.4)	13.01% (130.1)		0.08% (0.8)	0.43% (4.3)					
		•										
F Test P Value		0.0948	0.0192	0.0545		0.1120	0.0668					
Conclusion		Pass	Pass	Pass	-	Pass	Pass					

^{*} LOQ for CBN is 0.006% and LOQ for d8THC is 0.005%.

Terpenes

Sample 1-Blue homogeneity samples were extracted and analyzed for 26 terpenes using SOP for sample Preparation and Analysis: Terpene Profile by GC/MS. Five terpenes were evaluated for homogeneity. Two aliquots of each sample were weighed and extracted using high- purity ethyl acetate. Samples were vortexed thoroughly, centrifuged, and filtered before being analyzed against a five-point calibration curve.

Harris St. Tarkin St.												
		Homogen	eity Testing Res	ults								
Terper	ne	b-Myrcene	linalool	terpineol	caryophyllene	guaiol						
Sample	Replicate		Measured Concentration (w/w%)									
3530-H	1	0.23	0.019	0.013	0.057	0.042						
3530-H	2	0.22	0.019	0.014	0.055	0.038						
4014-H	1	0.21	0.019	0.014	0.053	0.040						
4014-H	2	0.25	0.022	0.015	0.063	0.045						
6200-H	1	0.25	0.022	0.015	0.063	0.039						
6200-H	2	0.27	0.022	0.016	0.064	0.043						
		Sum	mary Statistics									
Mean (w/w%)		0.24	0.021	0.014	0.059	0.041						
Mean (mg/g)		2.37	0.21	0.14	0.59	0.41						
Within-Sample Std D	ev using w/w%	0.018	0.001	0.001	0.004	0.003						
Between Sample Std	Dev using	0.025	0.002	0.001	0.005	0.002						
Total Std Deviation u	sing w/w%	0.031	0.002	0.001	0.007	0.004						
Total CV using w/w%		13%	10%	10%	11%	9%						
Min Measurement w	//w% (mg/g)	0.21% (2.1)	0.019% (0.2)	0.013% (0.1)	0.053% (0.5)	0.038% (0.4)						
Max Measurement v	v/w% (mg/g)	0.27% (2.7)	0.022% (0.2)	0.016% (0.2)	0.064% (0.6)	0.045% (0.5)						
F Test P Value		0.0487	0.0465	0.0361	0.0573	0.1535						
Conclusion		Pass	Pass	Pass	Pass	Pass						

Heavy Metals

Sample 1-Blue homogeneity samples were evaluated for arsenic, cadmium, lead, and mercury by a third-party ISO 17025 accredited laboratory. SC Labs used a SOP for Elemental Analysis by ICP-MS to analyze Sample 1-Blue samples for heavy metal content. The entire sample was homogenized first at the lab before two aliquots of each sample were taken for analysis.

	Homoge	neity Testing	Results		
Heavy	Metals	arsenic ^a	cadmium ^b	lead ^c	mercury ^d
Sample	Replicate	Measure	d Concent	ration (ug/	kg, ppb)
1430-H-HM	1	<lod< td=""><td><lod< td=""><td><lod< td=""><td><loq< td=""></loq<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><loq< td=""></loq<></td></lod<></td></lod<>	<lod< td=""><td><loq< td=""></loq<></td></lod<>	<loq< td=""></loq<>
1430-H-HM	2	<lod< td=""><td><lod< td=""><td><lod< td=""><td><loq< td=""></loq<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><loq< td=""></loq<></td></lod<></td></lod<>	<lod< td=""><td><loq< td=""></loq<></td></lod<>	<loq< td=""></loq<>
4110-H-HM	1	<lod< td=""><td><lod< td=""><td><lod< td=""><td><loq< td=""></loq<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><loq< td=""></loq<></td></lod<></td></lod<>	<lod< td=""><td><loq< td=""></loq<></td></lod<>	<loq< td=""></loq<>
4110-H-HM	2	<lod< td=""><td><lod< td=""><td><lod< td=""><td><loq< td=""></loq<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><loq< td=""></loq<></td></lod<></td></lod<>	<lod< td=""><td><loq< td=""></loq<></td></lod<>	<loq< td=""></loq<>
4214-H-HM	1	<lod< td=""><td><lod< td=""><td><lod< td=""><td><loq< td=""></loq<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><loq< td=""></loq<></td></lod<></td></lod<>	<lod< td=""><td><loq< td=""></loq<></td></lod<>	<loq< td=""></loq<>
4214-H-HM	2	<lod< td=""><td><lod< td=""><td><lod< td=""><td><loq< td=""></loq<></td></lod<></td></lod<></td></lod<>	<lod< td=""><td><lod< td=""><td><loq< td=""></loq<></td></lod<></td></lod<>	<lod< td=""><td><loq< td=""></loq<></td></lod<>	<loq< td=""></loq<>
	Sun	nmary Statist	tics		
Mean (ug/kg)					
Within-Sample St	d Dev using				
ug/kg					
Between Sample	Std Dev using				
ug/kg					
Total Std Deviation	on using ug/kg				
Total CV using ug,	/kg				
Min Measuremer	nt (<i>ug/kg</i>)				
Max Measureme	nt (<i>ug/kg</i>)				
F Test P Value					
Conclusion		N/A	N/A	N/A	N/A

^a LOD for arsenic is 20 ug/kg. LOQ for arsenic is 100 ug/kg.

^b LOD for cadmium is 20 ug/kg. LOQ for cadmium is 50 ug/kg.

^c LOD for lead is 40 ug/kg. LOQ for lead is 100 ug/kg.

^d LOD for mercury is 2 ug/kg. LOQ for mercury is 10 ug/kg.

Moisture

SC Labs also provided the homogeneity analysis for moisture content. Each sample in its entirety was homogenized before two aliquots of each sample were taken for

analysis.

Homogeneity Testing Results									
Moisture Content									
Sample	Sample Replicate								
1062-H-PM	1	12.8							
1062-H-PM	2	13.0							
1113-H-PM	1	12.9							
1113-H-PM	2	13.1							
1730-H-PM	1	12.7							
1730-H-PM	13.1								
	Summary Statistics								
Mean (w/w %)		12.9							
Within-Sample Std [Dev using w/w%	0.20							
Between-Sample Sto	d Dev using w/w%	0.13							
Total Std Deviation	usin <mark>g</mark> w/w%	0.24							
Total CV using w/w9	%	2%							
Min Measurement ((w/w%)	12.7							
Max Measurement	(w/w%)	13.1							
F Test P Value	0.1643								
Conclusion		Pass							

Cannabis/Hemp Proficiency Testing Program Instructions for Analysis

Enclosed are two dried hemp samples which are color coded based on the analysis to be performed. Sample 1-BLUE (cannabinoids, terpenes, moisture, and heavy metals) and Sample 2-RED (pesticides). Both samples are the same Matrix. If needed, an aliquot of Sample 1-BLUE can be used as a baseline or matrix blank when evaluating Sample 2-RED, results for pesticide residues.

Each sample has its own Instructions for Analysis page. This page contains information such as sample size, analytes, units, etc. Instructions on how to report methods and results on the PT Website, along with Instructions for Analysis for each sample, will be available to laboratories once they access their PT Website account. An email notification with a link to the secure AOAC PT website, and the labs login and password, was provided to the participating laboratory's contact on record. Proficiency testing samples should be handled like routine samples. Participants can test for as many, or as few, of the analytes as needed. Labs have three weeks to analyze samples and report results. When reporting, participants are to calculate each analysis on an as-received basis. Percent moisture should not be factored into the calculation and should be reported as a separate analysis.

RESULT DUE DATE: MAY 24, 2022

Verify Temperature Upon receipt:

Sample 1-BLUE is considered satisfactory if received at ≤ 10 °C

Sample 2-RED is considered satisfactory if received at ≤ 10 °C.

Storage Temperatures:

Sample 1-BLUE should be stored refrigerated at \leq 8 °C until analysis.

Sample 2-RED should be stored frozen at \leq -15 °C until analysis.

Instructions for Analysis: Sample 1-BLUE contains approximately 10.0g of dried Hemp matrix. There is approximately 2.5g for analysis of each of the following groups of analytes: Cannabinoids, Terpenes, Moisture, and Heavy Metals. A lab can test and report for as many, or as few, of the analytes as needed:

Cannabinoids - Report values from the single barrier bag provided on an **as-received basis**, in units of **mass** % for any of the analytes listed below.

- 1. Cannabindiol (CBD) (CAS No. 13956-21-1)
- 2. Cannabidiolic acid (CBDA) (CAS No. 1244-58-2)
- 3. Cannabinol (CBN) (CAS No. 521-35-7)
- 4. $\Delta 9$ -tetrahydrocannabinol ($\Delta 9$ -THC) (CAS No. 1972-08-3
- 5. Tetrahydrocannabinolic acid (THCA) (CAS No. 23978-85-0)
- 6. Cannabichromene (CBC) (CAS No. 20675-51-8)
- 7. Cannabichromenic acid (CBCA) (CAS No. 20408-52-0)

- 8. Cannabidivarinic acid (CBDVA) (31932-13-5)
- 9. Cannabigerol (CBG) (25654-31-3)
- 10. Cannabigerolic acid (CBGA) (25555-57-1
- 11. Cannabidivarin (CBDV) (24274-48-4)
- 12. $\Delta 8$ -tetrahydrocannabinol ($\Delta 8$ -THC) (5957-75-5)
- 13. Tetrahydrocannabivarin (THCV) (28172-17-0)
- 14. Tetrahydrocannabivaric acid (THCVA) (39986-26-0)

Terpenes - Report values from the single barrier bag provided on an as-received basis, in units of mass % for any of the analytes listed below.

- 3-carene
 (CAS No. 13466-78-9)
- 2. Alpha-bisabolol (CAS No. 23089-26-1)
- 3. Alpha cedrene (CAS No. 469-61-4)
- 4. Alpha-humulene (CAS No. 6753-98-6)
- 5. Alpha-phellandrene (CAS No. 4221-98-1)
- 6. Alpha-pinene (CAS No. 80-56-8)

- 7. Beta-myrcene (CAS No. 123-35-3)
- 8. Beta-ocimene (CAS No. 13877-91-3
- 9. Beta-pinene (CAS No. 19902-08-0)
- 10. borneol (CAS No. 464-45-9)
- 11. camphene (CAS No. 79-92-5)
- 12. camphor (CAS No. 464-48-2)

- 13. cedrol (CAS No. 77-53-2)
- 14. eucalyptol (CAS No. 470-82-6)
- 15. fenchone (CAS No. 7787-20-4)
- 16. fenchyl alcohol (CAS No. 1632-73-1)
- 17. guaiol (CAS No. 489-86-1)
- 18. isoborneol (CAS No. 124-76-5)
- 19. limonene (CAS No. 5989-27-5)

- 20. linalool (CAS No. 78-70-6)
- 21. menthol (CAS No. 2216-51-5)
- 22. o-cymene (CAS No. 527-84-4)
- 23. pulegone (CAS No. 89-82-7)
- 24. terpineol (CAS No. 8000-41-7)
- 25. valencene (CAS No. 4630-07-3)
- 26. y-terpinene (CAS No. 99-85-4)

Moisture - Report values from the single barrier bag provided on an **as-received basis**, in units of % moisture.

Heavy Metals - Report values from the single barrier bag provided on an **as-received basis**, in units of **ug/kg** for any of the analytes listed below.

- 1. total arsenic (CAS No. 7440-38-2)
- 2. total cadmium (CAS No. 7440-43-9
- 3. total lead (CAS No. 7439-92-1)
- 4. total mercury (CAS No. 7439-97-6)
- 5. Antimony (744-36-0)
- 6. Barium (744-39-3)
- 7. Chromium (18540-29-9)
- 8. Copper (744-50-8)
- 9. Nickel (7440-02-0)
- 10. Silver (7440-22-4)
- 11. Selenium (7782-49-2)
- 12. Zinc (7440-66-6)