1 2	AOAC SMPR 20XX.XX, DRAFT VERSION 11-2024
3 4	Standard Method Performance Requirements (SMPRs [®]) for Detection and/or Enumeration of Listeria monocytogenes in Cannabis Infused Edibles
5 6 7	Intended Use
7 8 9	Surveillance and Monitoring by Trained Technicians
9 10	Purpose What : AOAC Standard Method Performance Requirements (SMPRs [®]) are voluntary consensus standards
10	developed in accordance with the AOAC policy, "AOAC Due Process for Development of AOAC Non-
12	Method Consensus Standards and Documents." SMPRs describe scientific community's recommended
12	minimum method performance characteristics and analytical requirements for a specific method related
13 14	intended use.
15	Who : Drafted by AOAC working groups, SMPRs are adopted by AOAC by a consensus of stakeholders
16	affiliated with its integrated science programs and projects which are composed of volunteer subject
17	matter experts representing academia, government, industry, and nonprofit sectors from around the
18	world.
19	Use : AOAC uses SMPRs in its core science programs in which they are a resource for AOAC method experts,
20	including expert review panels, in the evaluation of validation study data for methods submitted to the
21	AOAC Official Methods of Analysis SM and AOAC Performance Tested Methods SM programs. Additionally,
22	AOAC SMPRs may be used to provide acceptance criteria for the verification of methods and serve as a
23	resource to guide method development and optimization.
24	
25	
26	1. Applicability
27	Methods used to detect Listeria monocytogenes (see Table 1.) in cannabis infused edibles with the
28	option of enumeration upon detection.
29	
30	2. Analytical Technique
31	Any analytical technique that can meet the requirements of this SMPR.
32	
33	3. Definitions:
34	
35	Candidate Method.—The method submitted for validation [Appendix J: AOAC INTERNATIONAL
36	Methods Committee Guidelines for Validation of Microbiological Methods for Food and Environmental
37	Surfaces, Official Methods of Analysis of AOAC INTERNATIONAL, (2023) 22 nd Ed., AOAC
38	INTERNATIONAL, Rockville, MD, USA]
39	
40	Candidate Method Presumptive Result.—Preliminary result for a test portion produced by following
41	a candidate method's instructions for use.
42	
43	Candidate Method Confirmed Result.—Final result obtained for a test portion after cultural
43 44	confirmation of a candidate method.
44 45	
43	

- 46 *Cannabis*.—Genus of flowering plants within the Cannabinaceae family that commonly contain 9 47 tetrahydrocannabinol (THC), cannabidiol (CBD), and other cannabinoids and terpenes. Cannabis
 48 includes, but is not limited to, high-THC and high-CBD cultivars.
- 50 *Cannabis Infused Edibles*.—Food and drinks containing extracts of cannabis and/or cannabis 51 materials (Category III).

53 **Enumeration**.—Determination of the number of colony-forming units (cfu) of *Listeria monocytogenes* 54 per gram, per milliliter, per square centimeter, or per sampling device, when the analysis is carried 55 out in accordance with this document.

56

62

68

74

80

82

85

49

52

57 **Exclusivity**.—Study involving pure nontarget strains, which are potentially cross-reactive, that shall 58 be not detected or enumerated by the candidate method. See Table 2 for a list of recommended 59 nontarget strains. [Appendix J: AOAC INTERNATIONAL Methods Committee Guidelines for Validation 60 of Microbiological Methods for Food and Environmental Surfaces, Official Methods of Analysis of 61 AOAC INTERNATIONAL, (2023) 22nd Ed., AOAC INTERNATIONAL, Rockville, MD, USA]

- 63 **Fractional positive**.—Validation criterion that is satisfied when an unknown sample yields both 64 positive and negative responses within a set of replicate analyses. The proportion of positive 65 responses should fall between 25 and 75% and should ideally approximate 50% of the total number 66 of replicates in the set. A set of replicate analyses are those replicates analyzed by one method. Only 67 one set of replicates per matrix is required to satisfy this criterion.
- Inclusivity.—Study involving pure target strains that shall be detected or enumerated by the
 candidate method. See Tables 1 and 3 for a list of recommended target strains. [Appendix J: AOAC
 INTERNATIONAL Methods Committee Guidelines for Validation of Microbiological Methods for Food
 and Environmental Surfaces, Official Methods of Analysis of AOAC INTERNATIONAL, (2023) 22nd Ed.,
 AOAC INTERNATIONAL, Rockville, MD, USA]
- Laboratory probability of detection (LPOD).—The POD value obtained from combining all valid
 collaborator data sets for a method for a given matrix at a given analyte level or concentration.
 [Appendix H: Probability of Detection (POD) as a Statistical Model for the Validation of Qualitative
 Methods, Official Methods of Analysis of AOAC INTERNATIONAL, (2023) 22nd Ed., AOAC
 INTERNATIONAL, Rockville, MD, USA]
- 81 *LCL*.—Lower confidence limit.
- *Listeria monocytogenes*. An environmental pathogen that can contaminate foods and cause a mild,
 non-invasive illness, listerial gastroenteritis, or a severe, invasive illness, listeriosis.
- *Probability of detection (POD)*.—The portion of positive analytical outcomes for a qualitative method
 for a given matrix at a given analyte level or concentration. The difference in POD values between
 presumptive and confirmed results is termed dPOD_{CP}.
- 89

- Test portion.— A specified quantity of the sample that is taken for analysis by the method. For
 cannabis infused edibles, a 25 g test portion is used. A larger test portion can be used in validation
 studies when appropriate. See Table 4 for minimum test portion requirements.
- 93 94

UCL. —Upper confidence limit.

96 4. Method Performance Requirements

- 97 See Table 3 for inclusivity and exclusivity performance requirements
- 98 See Table 4 for category test portion requirement
- 99 See Table 5 for acceptance criteria for detection method validation
- 100 See Table 6 for acceptance criteria for enumeration method validation
- 101 See Table 7 for matrix claims acceptance criteria
- 102See Table 8 for descriptions of MPN analysis103

104 **5.** Reference Materials

- *Reference cultures.* The use of live cultures and/or fungal spores (liquid stressed/non-stressed,
 lyophilized) is required for inclusivity and exclusivity testing and for inoculation of test matrices
 during the matrix studies. Extracted DNA is not suitable for use in validating methods against this
 SMPR but may be used to develop supplemental information.
- 109
- Selective broth and agar. See Table 9 for selective broth and agar recommendations
 Inclusivity organisms. See Table 1 for inclusivity organisms
- 112 **Exclusivity organisms.** See Table 2 for exclusivity organisms
- 113

114 6. System suitability tests and/or analytical quality control

- 115Positive and negative controls shall be embedded in assays as appropriate. Inhibition controls116should be used for method verification for each new matrix. Manufacturer must provide written117justification if controls are not appropriate to an assay.
- 118

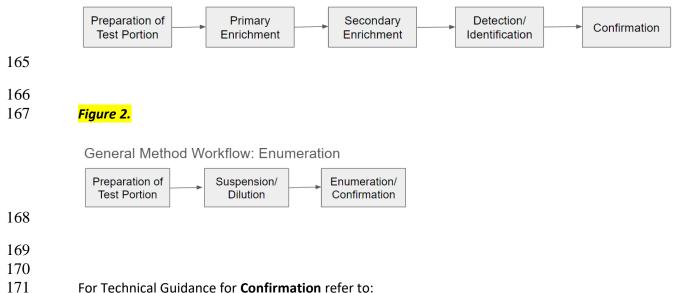
124

133

119 **7.** Validation Guidance120

- 121Appendix F 'Guidelines for Standard Method Performance Requirements', in Dr. George W Latimer,122Jr. (ed.), Official Methods of Analysis of AOAC INTERNATIONAL, 22 (New York, 2023; online123edn, Oxford Academic, 4 Jan. 2023), https://doi.org/10.1093/9780197610145.005.006
- Appendix J: 'AOAC INTERNATIONAL Methods Committee Guidelines for Validation of Microbiological
 Methods for Food and Environmental Surfaces', in Dr. George W Latimer, Jr. (ed.), *Official Methods of Analysis of AOAC INTERNATIONAL*, 22 (New York, 2023; online edn, Oxford Academic, 4 Jan.
 2023), <u>https://doi.org/10.1093/9780197610145.005.010</u>
- 130At the time of the publication, no regulatory reference method exists for the confirmation of Listeria131monocytogenes from cannabis infused edibles. Until a suitable reference method is established the132following is recommended for method developers:
- 134To screen samples for the presence or absence of the target analyte, two methods that employ135different technologies (e.g., agar plate, PCR, ELISA, etc.) must be used. It is recommended that a136combination of two or more confirmational methods (i.e., cultural, biochemical, molecular) be used137in the validation.

- 138139To ensure the viability of the inoculating organism (both confirming presumptive results or140determining false negative results) a secondary and/or extended enrichment (minimum total time of14148 h of enrichment) followed by plating of the sample to a minimum of two types of agar plates, one142of which is recommended to be chromogenic agar (Table 10). Final confirmation can be achieved via143matrix assisted laser desorption/ionization time of flight (MALDI-TOF) mass spectroscopy,144sequencing, or other suitable confirmatory procedures (e.g., biochemical analysis).
- 145


146When performing the validation, bulk inoculation of test material is required. In certain instances147(e.g., lollipop, gummies, etc.) individual item inoculation may be acceptable.

For the Single Laboratory Validation with artificial contamination, matrix naturally contaminated with non-target organisms (when available) shall be used. When available, matrix naturally contaminated with the target should be used. For at least one matrix evaluated during the single laboratory validation, competing non-target microflora must be at least 10x the level of the target microorganism. If the concentration of competing microflora does not exceed 10x the target organism for any matrix, artificial contamination of one matrix with non-target organism(s) is required.

A minimum three level most probable number (MPN) study should be performed to determine the concentration of the target organism used in the validation. Use the test portions from the matrix study as one level in the MPN study. See AOAC Appendix J guidelines and Table 8 for details on performing the MPN study.

- 161 162 Technical Guidance
- 162
- 164 **Figure 1.**

172	(1)	ISO 11290-1:2017, Microbiology of the food chain - Horizontal method for the detection and
173		enumeration of Listeria monocytogenes and of Listeria spp. Part 1: Detection Method (2017)
174		International Organization for Standardization, Geneva, Switzerland
175		https://www.iso.org/standard/60313.html
176	(2)	Anthony D. Hitchins, A., Jinneman, K., Chen, Y., (2022) Bacteriological Analytical Manual:
177		Chapter 10, Sections G-I, Detection of Listeria monocytogenes in Foods and Environmental
178		Samples, and Enumeration of Listeria monocytogenes in Foods, U.S. Food and Drug
179		Administration, <u>https://www.fda.gov/food/laboratory-methods-food/bam-chapter-10-</u>
180		detection-listeria-monocytogenes-foods-and-environmental-samples-and-enumeration
181	(3)	Health Products and Food Branch MFLP-01, Isolation of Listeria monocytogenes from food
182		samples (2016) Franco Pagotto and Karine, Hébert Microbiology Research Division, Health
183		Canada https://www.canada.ca/en/health-canada/services/food-nutrition/research-
184		programs-analytical-methods/analytical-methods/compendium-methods/laboratory-
185		procedures-microbiological-analysis-foods-compendium-analytical-methods.html
186	(4)	Health Canada, Health Protection and Food Branch, Food Directorate, Policy on Listeria
187		monocytogenes in Ready-to-Eat Foods (2023) <u>https://www.canada.ca/en/health-</u>
188		canada/services/food-nutrition/legislation-guidelines/policies/listeria-monocytogenes-
189		ready-eat-foods.html
190	(5)	United States Department of Agriculture Food Safety and Inspection Service, Office of Public
191		Health Science MLG 8.13, Isolation and Identification of Listeria monocytogenes from Red
192		Meat, Poultry, Ready-to-Eat, Siluriformes (Fish) and Egg Products, Environmental Samples
193		(2021), https://www.fsis.usda.gov/sites/default/files/media_file/2021-09/MLG-8.13.pdf
194	(6)	Public Health England, Detection and Enumeration of Listeria monocytogenes and other
195	(-)	Listeria species (2018) National Infection Service Food, Water and Environmental
196		Microbiology Standard Method
197		https://assets.publishing.service.gov.uk/media/5c2e2c3540f0b66cf5a38e51/detection and
198		enumeration of listeria monocytogenes and other listeria species.pdf
199		
200		
201	For Tec	hnical Guidance for Enumeration refer to:
202		
203	(1)	ISO 11290-1:2017, Microbiology of the food chain - Horizontal method for the detection and
204	(-)	enumeration of Listeria monocytogenes and of Listeria spp. Part 2: Enumeration Method
205		(2017) International Organization for Standardization, Geneva, Switzerland
206		https://www.iso.org/standard/60314.html
200	(2)	Anthony D. Hitchins, A., Jinneman, K., Chen, Y., (2022) Bacteriological Analytical Manual:
208	(2)	Chapter 10 Detection of Listeria monocytogenes in Foods and Environmental Samples, and
209		Enumeration of Listeria monocytogenes in Foods, U.S. Food and Drug Administration,
210		https://www.fda.gov/food/laboratory-methods-food/bam-chapter-10-detection-listeria-
211		monocytogenes-foods-and-environmental-samples-and-enumeration
212	(3)	Health Products and Food Branch MFLP-74, Enumeration of Listeria monocytogenes in foods
213		(2011) Franco Pagotto, Yvon-Louis Trottier, Jacqueline Upham and Irene Iugovaz, Research
214		Division, Bureau of Microbial Hazards, Food Directorate, Health Canada
215		https://www.canada.ca/en/health-canada/services/food-nutrition/research-programs-
216		analytical-methods/analytical-methods/compendium-methods/laboratory-procedures-
217		microbiological-analysis-foods-compendium-analytical-methods.html

218		a, Health Protection and Food Branch, Food Directorate, Policy on Listeria
219		es in Ready-to-Eat Foods (2023) <u>https://www.canada.ca/en/health-</u>
220		es/food-nutrition/legislation-guidelines/policies/listeria-monocytogenes-
221	ready-eat-food	
222		England, Detection and Enumeration of Listeria monocytogenes and other
223	-	s (2018) National Infection Service Food, Water and Environmental
224	•.	Standard Method
225		.publishing.service.gov.uk/media/5c2e2c3540f0b66cf5a38e51/detection_and
226	_enumeration	of listeria monocytogenes and other listeria species.pdf
227		
228		
229	8. Maximum Time-To-De	etermination: None
230		
231		
232	Table 1. Inclusivity Panel	
232	Table 1. Inclusivity Paller	Serotypes ^a : 1/2a, 1/2b, 1/2c, 3a, 3b, 3c, 4a, 4ab, 4b, 4c, 4d,
	Listeria monocytogenes	4e, 7
233	^a At least one strain of each sero	type of <i>Listeria monocytogenes</i> is required to be included.
234		
235		
236		
237		
238		
239		
240		
241		
242		
243		
244		
245		
246		
247		
248		
249		
250		
251		
252		
253		
254		
255		
256		
257		
258		
259		
260		
261		

6

Listeria innocua ^b	Enterobactor con
Listeria ivanovii ^b	Enterobacter spp.
	Enterococcus spp.
Listeria seeligeri ^b	Hafnia spp.
Listeria welshimeri ^b	Klebsiella spp.
Listeria grayi ^b	Kocuria spp.
Listeria fleischmanii	Kurthia spp.
Listeria marthii	Jonesia spp.
Listeria rocourtiae	Lactobacillus spp.
Listeria weihenstephanensis	Lactococcus spp.
Alicyclobacillus spp.	Leuconostoc spp.
Bacillus spp	Marinilactibacillus spp.
Brevibacterium spp.	Micrococcus spp.
Bronchothrix spp.	Pediococcus spp.
Candida spp.	Pseudoclavibacter spp.
Carnobacterium spp.	Pseudomonas spp.
Cellulosimicrobium spp.	Rhodococcus spp.
Citrobacter spp.	Rhodotorula spp.
Clostridium spp.	Rothia spp.
Cornebacterium spp.	Saccharomyces spp.
Cronobacter spp.	Salmonella enterica
Eryspielothrix spp.	Staphylococcus spp.
Escherichia spp.	Streptococcus spp.

262 Table 2. Exclusivity Panel^a

263 264 265 ^aNon-Listeria species listed are recommended. More may be added if appropriate. Strain lists should be submitted for review

and approval prior to conducting the validation study.

^bThese Listeria species are required for inclusion in the exclusivity study.

266

267 Table 3. Inclusivity/Exclusivity Performance Requirements

	Final test	
	concentration	Minimum
Parameter requirements	(cfu/mL)	acceptable results
Single-laboratory validation (SLV) study: A minimum of 50 strains is required to be cultured by the candidate method enrichment procedure (including those detailed in Table 9).	10–100 x limit of detection of the candidate method	100% positive resultsª
SLV study: At least 30 non-target organisms, cultured under optimal conditions for growth ^b	Overnight growth undiluted	100% negative resultsª
	Single-laboratory validation (SLV) study: A minimum of 50 strains is required to be cultured by the candidate method enrichment procedure (including those detailed in Table 9). SLV study: At least 30 non-target organisms, cultured under optimal conditions for	Parameter requirements(cfu/mL)Single-laboratory validation (SLV) study: A minimum of 50 strains is required to be cultured by the candidate method10–100 x limit of detection of the candidate methodenrichment procedure (including those detailed in Table 9).candidate methodSLV study: At least 30 non-target organisms, cultured under optimal conditions forOvernight growth undiluted

determined and communicated to method users.

^bIn instances where an exclusivity culture produces a positive result by the candidate method, the culture may be reanalyzed after culture following the candidate method enrichment procedure. Both results (optimal growth conditions and candidate method enrichment) must be reported.

Table 4. Test Portion Requirements

Categories	Minimum test portion size ^a		
Chocolate	25 g		
Beverages	25 g		
Baked goods	25 g		
Tinctures	25 g		
Gummies	25 g		
Capsules/Pills	25 g		
^a Minimum test portion size required for validation. Alternatively,			
larger test portions may be validated.			

Table 5. Validation Acceptance Criteria – Detection methods

	Replicate test	Study design		
Validation material ^a	portions	requirements	Acceptance criterion	
S	ngle laboratory valida	ation with artificial contar	mination	
Low contamination level	20	Fractional positive results, POD 0.25–0.75 Ex. 0.2–2 cfu/test portion	dPOD _{CP} 95% CI: LCL < 0 < UCL [♭]	
High contamination level	5	POD 1.00 ^c Ex. 2–10 cfu/test portion		
Non-inoculated material (control)	5	POD 0.00 ^c Non-inoculated		
Single Laboratory V	alidation with natura	l contamination (minimu	m two materials required)	
Material 1	20	Fractional positive results, POD 0.25–0.75	dPOD _{CP} 95% CI: LCL < 0 < UCL ^b	
Material 2	20	No requirement		
	Multi La	boratory Validation		
Low contamination level	12	LPOD 0.2–0.8 Ex. 0.2–2 cfu/test portion		
High contamination level	12	LPOD ≥ 0.95 Ex. 2–10 cfu/Test Portion	dLPOD _{CP} 95% CI: LCL < 0 < UCL ^b	
Non-inoculated material (control)	12	LPOD ≤ 0.05 Non-inoculated		
explanation provided.		I should encompass 0. If not, th	rix. The results must be investigated, and an	

Table 6. Validation Acceptance Criteria – Enumeration methods

	Target	Replicate test			
Validation material ^a	contamination level ^b	portions	Acceptance criterion ^c		
	Single laboratory va	lidation study			
Low contamination level	10–100 cfu/g (mL)	5			
Medium contamination level	100–1,000 cfu/g (mL)	5			
High contamination level	1,000–10,000 cfu/g (mL)	5	90% CI on DOM within -0.5, 0.5		
Non-inoculated (control) level ^d	Non-inoculated	5			
	Multi laboratory va	lidation study			
Low contamination level	10–100 cfu/g (mL)	5			
Medium contamination level	100–1,000 cfu/g (mL)	5			
High contamination level	1,000–10,000 cfu/g (mL)	5	90% CI on DOM within -0.5, 0.5		
Non-inoculated (control)	Non ineculated	-			
level ^d	level ^d Non-inoculated 5				
^a Follow Table 6 for appropriate inoculum preparation and matrix stabilization for each matrix.					
^b Target contamination levels may be dependent on method developer requirements. Contamination levels should be at least 1 log ₁₀ apart.					
^c Report mean, standard deviation of repeatability, and difference of means (DOM) with 90 and 95% confidence intervals. If acceptance					
criterion is not observed, results must be investigated, and an explanation provided.					
^d Non-inoculated level is not required for naturally contaminated materials.					

Table 7. Acceptable Matrix Claims

Matrix claim	Criteria	Minimum No. of categories
Broad range of cannabis infused edibles	15 (minimum 3 matrices/category	4
Variety of cannabis infused edibles	≥10 (minimum 2 matrices/category)	4
Select cannabis infused edibles	≥5	2
Specific category	≥5	1
Specific matrix(s)	≥1	1

278 Table 8. Minimum Most Probable (MPN) Number Recommendation

	Inoculation	Large test	Medium test	Small test
Category	level	portions	portions	portions
Infused	Low	3 x 50 g	20 x 25 g ^a	3 x 10 g
Edibles	High	5 x 25 g ^a	3 x 10 g	3 x 5 g

279 ^aTest portions from matrix study

Table 9: Recommended agars and broths

Media name	Media type
Agar Listeria according to Ottaviani & Agosti (ALOA)	Agar
BBL™ Chromagar™ <i>Listeria</i>	Agar
Brilliance™ Listeria Agar	Agar

Lithium chloride-phenylathanol-moxalactam medium (LPM)	Agar
Modified Oxford Agar (MOX)	Agar
PALCAM Agar (PAL)	Agar
RAPID <i>L'mono</i> ™	Agar
Modified University of Vermont broth (UVM1)	Broth
Buffered Listeria Enrichment Broth (BLEB)	Broth
Fraser broth	<mark>Broth</mark>
Demi-Fraser broth	Broth

Table 10. Condition of inoculating culture and matrix stabilization

Matrix	Inoculating cells	Stabilization conditions
Perishable product	Liquid non-stressed culture	4°C, 48–72 h
Heat processed perishable product	Liquid heat stressed	4°C, 48–72 h
Frozen product	Liquid non-stressed culture (If frozen food is processed, cells must be heat stressed)	-20°C, 2 weeks
Shelf stable dry product	Dried culture	Ambient temperature (20–25°C), 2 weeks
Shelf stable liquid product (heat processed)	Liquid non-stressed culture (If shelf stable product is processed, cells must be heat stressed)	Ambient temperature (20–25°C), 2 weeks